当前位置:

OFweek人工智能网

其他

正文

从IBM、谷歌、亚马逊看当下AI的泛化

导读: 曾几何时,AI(人工智能)成为了诸多企业的口头禅,不管这个企业身处什么产业,是什么样的企业,好像不带上AI就落伍了,媒体更是天天充斥着各种AI的报道,我们也是听得耳朵磨出了糨子。在此我们不妨以业内公认的AI或技术或市场中的代表IBM、谷歌和亚马逊为例,看看AI的技术和市场究竟如何?

曾几何时,AI(人工智能)成为了诸多企业的口头禅,不管这个企业身处什么产业,是什么样的企业,好像不带上AI就落伍了,媒体更是天天充斥着各种AI的报道,我们也是听得耳朵磨出了糨子。在此我们不妨以业内公认的AI或技术或市场中的代表IBM、谷歌和亚马逊为例,看看AI的技术和市场究竟如何?

从IBM、谷歌、亚马逊看当下AI的泛化

IBM“沃森”(IBM Watson):被疑为噱头 商业化成本高企无实效

提及沃森,这个自从 6 年前在美国答题秀节目Jeopardy 中打败人类选手,就占据了无数的新闻头条,并最早商业化(主要用于医疗领域癌症的检测和预防)的所谓AI系统。不过,随着时间的推移,近期沃森却屡屡遭受业内的质疑。

从IBM、谷歌、亚马逊看当下AI的泛化

例如华尔街投行杰富瑞分析师詹姆斯?基斯纳(James Kisner)发布的关于IBM人工智能“沃森”(IBM Watson)的研究报告就称:IBM对沃森的投资很难给股东带来价值回报,并用案例说明了IBM沃森存在的广泛问题,即该案例来自IBM沃森与MD安德森癌症中心之间的合作,即在向沃森项目浪费了6000万美元之后,MD安德森癌症中心最终停止了与IBM在这方面的合作,并承认这项技术尚未准备好临床使用。而MD安德森癌症中心的情况并非个案。多名人工智能领域的创业者都表示,他们在金融服务和生物科技领域的客户在与IBM打交道时都有过类似经历。

与华尔街投行的分析相比较,今年五月,在CNBC的金融市场观察栏目“Closing Bell”上,风险投资人Chamath Palihapitiy更是语出惊人:“实话实说,Watson就是个笑话。我认为,IBM非常擅长利用销售和营销手段,来诱导信息不对称的人掏腰包。”

而美国认知科学会创始人 Roge Schank认为 沃森根本不是认知计算系统,IBM 有夸大吹嘘嫌疑,并做了如下论证,即为了展示沃森的超凡智能,IBM 从 2015年以来在热播电视节目中投放了沃森的广告。在广告中,沃森程序与摇滚灵魂人物鲍勃?迪伦进行了对话。

对此,Schank 指出,这个广告恰恰说明沃森完全没有理解迪伦的作品。尽管“时间流逝”之类的词汇在迪伦的作品中时常出现,但所有熟悉迪伦作品的人都知道,迪伦是一位抗争歌手,他的歌曲最关心的是民权、反战这些主题。不过,迪伦歌的歌词里并没有直白地写着“反战歌曲”、“民权运动”。沃森只根据词频统计等方式找到“时间流逝”、“爱情凋零”,而没有真正理解迪伦作品的真正主题。

谷歌DeepMind:除了围棋 技术与商业化类“沃森”前景不明

至于谷歌,去年AlphaGo依赖人工智能挑战号称最难的人类游戏围棋大获成功,让人工智能背后的“深度学习”广为人知,也把谷歌此前收购的AI科技公司DeepMind推到了公众面前。对此,就像前微软亚洲研究院常务副院长芮勇所言,想要实现真正的人工智能还有很长的路要走,今天所有的人工智能几乎都是来自于人类过去的大数据,没有任何一个领域的能力源自自我意识,不管是象棋还是围棋,计算机都是从人类过去的棋谱中学习。假如让AlphaGo去下跳棋,它就会完全傻掉。甚至说把围棋的棋盘稍作修改, AlphaGo都招架不住,但是人类就没有问题。AlphaGo可以打败三十多岁的李世石,但它的学习能力不及一个5岁的小孩,这二者是有很大区别的。

从IBM、谷歌、亚马逊看当下AI的泛化

与沃森相比,DeepMind则刚刚进入商业领域的应用。去年七月,谷歌宣布DeepMind已找到方法将谷歌数据中心的制冷用电量减少2/5。它的算法先分析数据中心的操作日志来理解任务,然后通过反复模拟运行来优化过程。同样,DeepMind也已经进入医疗行业。去年11月,公司获得了首个付费项目,与NHS公立医院皇家自由伦敦医院(Royal Free London)签下五年的合同,为其处理170万份病历。此外,DeepMind还获得了访问其它伦敦医院两个数据库的权限,即DeepMind利用AI软件分析了约100万份视网膜扫描报告成功找到了退行性眼疾的早期征兆,或通过头颈部癌症图像让AI软件学会区分健康和癌组织之间的不同。

从上述DeepMind的商业化看,与沃森类似,均需要首先获取现实世界的大数据,即使拥有大量数据的可供挖掘的谷歌,运用AI及机器学习技术改进医院、电网及工厂等系统时,获取其具体操作数据也非常重要。原因很简单,没有人类提供的背景数据,哪怕极为简单的挑战,现有的AI技术也无法胜任。因此,当前的AI技术实际上并不“智能”,也不是解决问题的万能手。

提及数据,在人机大战前,DeepMind耗费了数年时间学习围棋。参加《危险边缘》问答的沃森,研发人员输入了数TB有关问答节目和自然语言实例的数据,来帮助它理解这一节目的问答模式。只有靠人类这样有针对性的密集“训练”,这些机器才能表现得如此出色。会议安排助手X.ai这类看似简单的应用程序却花费了数年时间学习与会议安排相关的事项,才达到可投入商用的水平。而它们运作的过程,更类似于基于计算力提升之下的大数据分析和输出,远没有创造性的推理。而众所周知的事实是,在数据的处理(其实就是一种高速的运算),机器的能力早已经远远超过人类。

对此,有分析称,DeepMind未来可能无法单单通过利用AI程序解决复杂问题的方式创造大量营收,但DeepMind AI软件通过分析数据所获取的有用信息已经足够让谷歌为当初的竞标所投入的巨资值回票价。看到这里,相信业内应该知道DeepMind的本质以及谷歌打着AI旗号的真实目的了吧。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号