当前位置:

OFweek人工智能网

正文

英特尔中国研究院院长宋继强:融合AI与SI 推进智能机器人产业

导读: 今天,我们正在拥抱一个万物智能互联的新世界。越来越多的物和设备通过网络实现互联互通,让数据呈现爆发之势。数据洪流汹涌而至,数据正在成为技术领域最重要的驱动力。

:本文作者宋继强,英特尔中国研究院院长。

英特尔中国研究院院长宋继强:融合 AI 与 SI 推进智能机器人产业

宋继强

今天,我们正在拥抱一个万物智能互联的新世界。越来越多的物和设备通过网络实现互联互通,让数据呈现爆发之势。数据洪流汹涌而至,数据正在成为技术领域最重要的驱动力。人工智能、自动驾驶、5G 和VR/MR 等一系列前瞻性技术的出现,令我们有机会充分释放这些数据的潜能,不断升级人类生活体验。

非常高兴从今天开始,我们在雷锋网开设英特尔中国研究院专栏。借助这个平台,我们希望与大家分享并交流英特尔对于前瞻技术趋势的观察,探讨万物智能互联的当下与未来。作为专栏系列文章的开篇,让我们先从机器人、人工智能的视角切入,探究数据洪流时代的产业机遇。

融合 AI 与 SI 推进智能机器人产业

机器人作为人工智能最重要的应用领域,一直饱受关注。好莱坞大片中经常出现的智能机器人为大众设置了很高的预期,而现实的服务机器人的智能能力远未达标。伴随着近来深度学习催热的这一波人工智能大潮,智能机器人产业如何破局是一个很重要的问题。我认为两个方面非常关键:一个是人工智能(AI: Artificial Intelligence)与智能交互(SI: Smart Interaction)深度融合;另一个是智能机器人的安全性。关于安全性我们留到以后再谈,今天重点探讨AI与SI的融合。

AI 在学术界有一个比较常用的定义,就是要了解智能的实质,并且要能够生产出一种像人一样,以智慧的方式对外界输入作出反应的智能机器。这个学科的最终目的是让机器具有智能的反应能力,所以智能机器人可以看做是人工智能的终极目标。

了解智能的实质有两种办法:

    一种是通过哲学或者心理学的方法,从外部观察人的行为来推测人是以怎样的智能方式在思考;

    另外一种是把人脑切开看看神经解剖结构,并且通过脑活动检测技术和精心设计的实验来发现智能活动的规律。

当我们对智能有了一个认识(未必正确、但至少有了模型),那怎样把机器变得智能就需要数学家、计算机科学家、自动化专家去钻研。所以,人工智能相关的学科很多,除了软的理论、模型和算法,还需要依赖硬件落地,比如说需要芯片去给它提供强有力的计算和存储。对于机器人这种智能体,还需要有复杂的系统控制技术支撑。

现在这一波人工智能的热潮,实际上也是受益于目前最新的计算和存储的改进。神经网络技术来自于脑的神经元结构启发,但它跟脑的处理过程完全不一样。它是通过大规模的数据去训练,然后机器从数据中学习一些内在的规律,形成一个模型,再用这个模型去推测新的数据。这称为一个机器学习的过程,它需要很多的存储和计算能力,而我们现在正处于一个非常适合它大发展的时代。

为什么非常合适呢?因为受益于摩尔定律,过去20年硬件的能力获得大幅发展,其中单位成本的计算能力提高1.5万倍、存储能力提高3万倍。通讯技术从有线发展到无线,现在正向5G迈进。这意味着我们不仅可以让智能机器具有强大的大脑,在需要的时候还可以灵活利用云端的能力。云、端结合释放持续学习和改善的能力。

而 AI 的算法像深度学习,通过统计和大数据迎来一个非常大的飞跃,它在图像识别还有语音识别上已经超越了人类的能力。而且我们看到更大的数据也成为了可能,例如一辆无人驾驶汽车一天就产生4TB 的数据,而且是不同源的、异构的数据。有了这些数据以后就要考虑怎样去处理它来产生实时的价值,提供可靠、高质量的服务。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号